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Optimal Electric Vehicle Fast Charging
Station Placement Based on Game

Theoretical Framework
Yanhai Xiong , Jiarui Gan, Bo An, Chunyan Miao, and Ana L. C. Bazzan

Abstract— To reduce the air pollution and improve the energy
efficiency, many countries and cities (e.g., Singapore) are on the
way of introducing electric vehicles (EVs) to replace the vehicles
serving in current traffic system. Effective placement of charging
stations is essential for the rapid development of EVs, because it
is necessary for providing convenience for EVs and ensuring the
efficiency of the traffic network. However, existing works mostly
concentrate on the mileage anxiety from EV users but ignore
their strategic and competitive charging behaviors. To capture
the competitive and strategic charging behaviors of the EV users,
we consider that an EV user’s charging cost, which is dependent
on other EV users’ choices, consists of the travel cost to access the
charging station and the queuing cost in charging stations. First,
we formulate the Charging Station Placement Problem (CSPP)
as a bilevel optimization problem. Then, by exploiting the
equilibrium of the EV charging game, we convert the bilevel
optimization problem to a single-level one, following which we
analyze the properties of CSPP and propose an algorithm Opti-
mizing eleCtric vEhicle chArging statioN (OCEAN) to compute
the optimal allocation of charging stations. Due to OCEAN’s
scalability issue, we furthermore present a heuristic algorithm
OCEAN with Continuous variables to deal with large-scale real-
world problems. Finally, we demonstrate and discuss the results
of the extensive experiments we did. It is shown that our approach
outperform baseline methods significantly.

Index Terms— Electric vehicle charging station, congestion
game, facility placement.

I. INTRODUCTION

FOSSIL fuels are generally considered as non-renewable
resources and their running out is only a matter of time.

Meanwhile, the environment problem caused by burning the
fossil fuels is aggregating. Therefore, it has been an arisen
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topic to study and use alternative energies. Transportation
is a main consumer of fossil fuel energy and contributes a
large proportion to the pollution. Electric Vehicles (EVs) are
promising to replace traditional internal combustion vehicles
and move pollution away from urban areas. Electricity be
efficiently transformed from both fossil fuels and renewable
energies (e.g., solar energy and tidal energy). Thus EVs on the
road can achieve zero emission and reduce the pollution from
transportation. In recent years, there has been a rapid growth
of studies on EVs accompanying with the rising popularity of
the smart city concept [1]. A top-priority element for efficient
and fast diffusion of EVs is the support of charging facilities
like fast charging stations. Although charging at home is an
alternative for the EV users, it costs too much time (which can
reach 6 to 8 hours). Charging stations with high voltage [2] is
then a necessity for the convenience of EV users, because
it can charge the EVs at least 12 times faster. The EV
drivers’ convenience of charging is highly dependent on the
distribution of charging stations. Thus the latter can affect the
public’s willingness of choosing EVs, and the EV drivers’
charging behaviors. Consequently the traffic conditions in the
road network and the charging system’s performance are also
influenced.

Among the existing works on EV charging station place-
ment, most of them propose optimization models from dif-
ferent point of views. The optimization objectives include
investors’ financial cost (construction cost [3], [4] and main-
tenance cost [5] etc.), EV users’ convenience (EV users’
access cost [6] and charging station coverage [7], [8] etc.).
Others formulate different models for specific problems. For
example, the hitting set problem model is used in the work of
Funke et al. [9], who plan the charging station to ensure energy
supply in any shortest path commonly used in the region.
A multinomial logit model is employed by He et al. [10] to
anticipate the EV users’ choice distribution among difference
charging stations. However, none of existing works manage
to comprehensively considered the self-interested charging
behavior of the EV drivers. The EV users always prefer to
select charging destination and route that can reduce their cost.
As a result, their charging behavior can make difference in the
traffic condition and the charging system’s performance.

To study the Charging Station Placement Problem (CSPP)
realistically, we consider the self-interested charging behaviors
of EV users, which are competitive and strategic. The interac-
tion of charging behaviors with environment factors including
traffic condition in the road network and queuing condition in
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charging stations are also formulated into the model to decide
the optimal charging station placement. There are mainly three
reasons for such consideration. First, the queuing condition in
charging stations is considered because the queuing experi-
ence in charging stations is proven to be significant on the
adoption of EVs [11], [12]. Second, inspired by the works of
Gan et al. [13], [14], we can see that the traffic congestion
is influential in car drivers’ driving activity especially during
peak hours. Thus we plan the charging stations based on the
peak hour traffic network to minimize the charging activities’
influence on the traffic condition. Third, since the EV users’
cannot be centralized, we need to analyze how their charging
behaviors are influenced by factors like distribution and size
of charging stations, and traffic condition.

Our work makes three main contributions. Firstly, we build
a realistic CSPP model, in which the EV drivers’ strategic
charging behaviors, the traffic condition and the queuing time
in charging stations are considered. The overall objective is set
as minimizing the total charging cost of EV drivers (named
social cost), and EV drivers are assumed to minimize their
charging cost with strategic charging behavior. We formulate
the CSPP as a bi-level optimization problem, where we take
the the social cost as the upper-level objective, which is
the goal of the government (who is assumed to be the one
to decide the placement of charging stations); a charging
game (which falls into the class of congestion games) is
formulated in the sub-level problem and Nash Equilibrium
is adopted to define the EV drivers’ charging behaviors.
Secondly, we successfully transfer the bi-level optimization
problem into an equivalent single level optimization problem
by analyzing the definition and structure of the Nash Equilib-
rium in the charging game. We propose the algorithm OCEAN
(Optimizing eleCtric vEhicle chArging statioN placement) to
compute the optimal charging station placement. However,
the real-world problems have large scale of variables, and
OCEAN is unable to handle them due to the existence of
integer variables and the huge variable space. Thus we further-
more work out a heuristic algorithm OCEAN-C (OCEAN with
Continuous variables) that can handle the real-world CSPP and
ensure solution quality. Thirdly, we design and execute a lot
of experiments for both mock data and the real situation of
Singapore. The experimental results prove that the designed
algorithms OCEAN-C can efficiently solve the CSPP and our
approach outperforms some typical baseline methods.

II. CHARGING STATION PLACEMENT IN SINGAPORE

Named as “Garden City”, Singapore has a good reputation
for its nice environment and air quality. However, there is
still pollution around here, especially the air pollution caused
by the heavy traffic that surround us all day. According to
the official data [15], 20% of the total carbon emission and
75% of the air pollution in Singapore are caused by the
land transportation system, mostly attributed by the motorised
traffic. As a result, Singapore government is working on
mitigating the environment problem due to the traffic system
by introducing the clean EVs as replacement for traditional
internal combustion vehicles. The Singapore authorities have
started to test the possibility and feasibility of introducing EVs

Fig. 1. Zonal Map of Singapore

into Singapore since 2011. As a metropolis with advanced
energy network, the electric-car manufacturer BYD Asia-
Pacific announced that Singapore has the “best potential” to
implement EVs [16].

The construction of EV charging stations is the first chal-
lenge, to which the government needs to rise for successful
introduction of EVs. Besides the finance concern, there are
some elements far more important and urgent, among which
traffic condition is of top priority. The planning of charging
stations calls for careful investigation to avoid aggravating the
traffic congestion of this small city. Specifically, Singapore is
a small metropolis with a very small territory of 718.3 km2

only (Fig. 1). The maximum east west distance is 42km,
while the north south distance is barely 23km. In a city like
Singapore, the most commonly considered problem, namely
the limited EVs mileage (usually above 100km and some can
exceed 500km [17]) is not a big issue. Contrasting with the
small territory of Singapore is its huge population, which also
means a large population of vehicles. According to the Singa-
pore official announcement, there are more than 970 000 motor
vehicles in year 2014 on this small island, which indicates
the heavy traffic. The fact implies that rather than limited
mileage, we should make more efforts on balancing the traffic
in consideration of EV users’ charging behaviors.

Our first consideration is to minimize the traffic congestion
caused by the charging activities in the process of planning
the distribution of charging stations. The traffic condition
is influenced by charging activities of all the EV drivers.
In return, it also influences the EV drivers’ decision making of
choosing charging destinations. Moreover, the queuing time in
charging stations is also studied as an vital element that affects
EV drivers’ charging decisions. One reason is the long queuing
time implies larger space required to accommodate queuing
EVs in charging stations. Another is that it would frustrate the
EV drivers. We model the interactions among the allocation
of charging stations, EV drivers’ strategic and self-interested
charging activities, traffic congestion on the roads and queuing
time in charging stations to formulate the CSPP realistically.
To compute the optimal solution, we propose OCEAN and an
efficient heuristic algorithm OCEAN-C.

III. CHARGE STATION PLACEMENT PROBLEM

To minimize the social cost (defined in Section III-C), we try
to find the optimal charging station placement in a region.
In the following, we first define the topology of the studied
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TABLE I

NOTATION OVERVIEW

region, and then explain how we define the charging cost
of the EV users. A congestion-game-based interpretation of
the CSPP is introduced afterwards, which is followed by a
bi-level optimization formulation. For better understand of
the definitions, we present all the notations used in problem
definition section in Table I.

A. Zones and Charging Stations

We divide the region to be analyzed into n zones in set
N = {1, 2, ..., n} according to the geographic and residential
condition. We assume each zone is a candidate for building
charging station. The specific position of the station can be
decided through preliminary studies, which is out of our con-
sideration. For simplification, we name the candidate position
as center of the zone. In the following, we also use the set
of zones to represent the set of changing station candidates.
Any pair of zones are treated as adjacent if they share a
geographical border and they are directly connected by a main
road. The matrix A = {ai j }n×n is used to represent the
adjacency relationship between different zones, where ai j = 1
and ai j = 0 respectively represents that zone i and zone j are
adjacent or nonadjacent. For the ease of notations, we define
a zone to be adjacent to itself, i.e., aii = 1. The matrix
D = {di j }n×n denotes the distances between pairs of zones.
The average length of trips of EV drivers that reside in zone i
and charge in zone j is di j , which is estimated by the distance
between their centers, and dii is set as the radius of zone i .
The concrete example of this paper is Singapore. According
to the conventional partitioning method from the official site,
we divide it into a number of zones as shown in Fig. 1.

B. The EV Model

Although EVs can be charged at home, some EV drivers
would still need charging stations because (1) not everyone
has his/her own garage to charge the EV and (2) they might
forget to charge during night (since charging at home is time-
consuming) and need fast charging. We assume the number
of resident EV owners in need of charging in charging stations
in zone i as γi . The size of the charging station to be built in
zone i , i.e., the number of chargers is denoted as xi , which
is to be decided in this work. Note that xi is integer and
can be 0 (meaning that no charging station is built here).
Intuitively, EV owners are not willing to drive too far to
charge.1 Thus we assume that EV drivers can choose any one
from adjacent zones to charge. The number of EVs that charge
in zone i during peak hours is denoted as yi . Assume that
electricity prices are the same in different charging stations,
different charging destinations are indifferent in financial cost.
Thus we only consider the time cost for EV drivers, including
the travel time and the queuing time.

1) Travel Time: We consider the distance d and traffic
condition α (i.e., congestion level) on the road as two factors
that influence the travel time. The relationship between travel
time f and the two factors is shown with Eq. (1), where λ is
a constant [18].

fi j = λdi jαi j (1)

The congestion level α depends on the traffic on the road
and is defined in Eq. (2) following transportation science
research [19]–[22]. When there are more than one road directly
leading from zone i to zone j , we use the average traffic
condition, road capacity and distance. We use α0

i j to denote
the background traffic congestion, i.e., the normal traffic con-
gestion caused by any other vehicles except the EVs heading
for charging.

αi j = α0
i j + ki j yi j /τ (2)

Note that ki j denotes the inverse proportion of the road
capacity; the charging flow from zone i to zone j is repre-
sented by yi j ; and the fraction of EVs that charge during peak
hours is set as 1

τ . Thus ki j
yi j
τ represents the congestion caused

by EV users’ charging activities. The congestion level within
zone i is αii , set as the average congestion level of the main
roads inside zone i . We focus on the traffic condition and
charging demand during peak hours because (1) the traffic
congestion is usually most serious during peak hours period
and (2) there are some EV users have to charge during this
period due to their limited time and urgent energy demand.

2) Queuing Time: Besides the traffic condition, we also con-
sider EV users’ charging activities’ influence on the queuing
time in charging stations during peak hours. Recalling that
we assume that 1 in every τ EVs would charge at charging
stations during peak hours, we use yi

τ to denote the number
of EVs that arrive in zone i for charging during peak hours.
We assume that the average queuing time of EV users is

1To verify whether the assumption is believable, we relax it and allow EVs
to charge in nonadjacent zones in experiments as described in Section V-B.4.
The results prove it to be acceptable.
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Fig. 2. Strategy demonstration.

directly proportional to the number of EVs in the same station,
which can be formally defined as

gi = yi/μτ xi . (3)

Note that we use μ to denote the serving rate of chargers,
i.e., the number of EVs can be served per charger per unit
time.

C. A Congestion-Game-Based Interpretation

As we can see from the definition of charging cost in
Section III-B, when the background traffic (i.e., the cor-
responding parameters) and the charging station placement
(i.e., the number of chargers in each zone) are fixed, the travel
time and queuing time both are decided only by the number of
EVs that are using this corresponding road or charging station.
We can treat the roads and charging stations as congestible
resources. Thus EV users are playing a charging congestion
game [23]. We formally define the components of the charging
game in the following.

• Congestible element. There are two sets of congestible
elements in the charging game, respectively the charging
stations (i.e., the set of zones), which are denoted as
N = {1, ..., n} and the roads (among pairs of adjacent
zones and inside each zone) denoted by R = {〈i, j〉|i,
j ∈ N , ai j = 1}. Note that a road 〈i, j〉 is sensitive to
the direction and represents the road leading from zone i
to adjacent zone j .

• Player. We regard the γi EV users in the same zone as
identical players with the same strategies.

• Strategy. For each player i , we assume that a pure
strategy is to charge in a zone j adjacent to zone i ,2

i.e., to use congestible elements charging station i and
corresponding road 〈i, j〉. The players can play mixed
strategies, which significant the group of EVs in the
same zone charge with different pure strategies and their
choices form a distribution. Formally, the probability that
EVs in zone i charge in zone j is denoted as pi j and the
mixed strategy of player i is defined as pi = {pi j }. For
example, a group of EV drivers in zone i can charge in
4 different zones as shown in Fig. 2 Then the strategy
profile of all players are denoted as P = 〈pi 〉.

• Cost. The congestion cost for each congestible element
is defined in Eqs. (1) and (3) respectively for i ∈ N
and 〈i, j〉 ∈ R. For simplicity, we use gi(·) and fi j (·)
to denote the congestion cost, whose variable is the
number of users for corresponding congestible element.

2This can also be assumed as a set of en-route zones.

According to the players’ strategy profile, we can then
derive the number of users of each congestible element.
For congestible elements R and N , the number of users
under strategy profile P is respectively:

yi j = γi pi j , (4)

y j =
∑

i∈N yi j . (5)

Next, we can define the charging cost of each player i
according to the derived cost for each congestible element. For
easy notation, we denote the set of adjacent zones of zone i as
Ai = { j |ai j = 1}. Then the charging cost of player i , i.e., Ci

can be formulated as a function of the strategy profile P as in
the following

Ci (P) =
∑

j∈Ai
γi pi j (g j (y j )+ fi j (yi j )). (6)

D. Bilevel Optimization Formulation

For the solution concept of the above charging congestion
game, we adopt the mixed strategy Nash equilibrium concept.
Specifically, with the assumption that all the players are aware
of other players’ charging strategies, under the equilibrium
state, no player can decrease her charging cost by unilaterally
changing her own charging strategy. Formally, we can define
the equilibrium state with a set of optimizations

pi ∈ arg minp′i Ci (P−i ,p′i ), ∀i ∈ N .

Note that we use P−i to denote the strategy profile of players
except player i (i.e., type i EVs).

When planning the charging station placement, we stand
with the government authority, whose goal is to minimize
the social cost when given a fixed budget, a number B of
chargers. Consider the overall benefits, we define the social
cost as the total charging cost of all players,3 which can be
formally defined as the following formulation when given a
charging station placement plan.

C(P) =
∑

i∈N Ci (P). (7)

Note that the social cost is a function of the charging strategy
of all players, i.e., P, because their strategies influence the
charging cost of each of them, and sequentially the social cost.

Considering that the the government authority wants to
decide the best charging station placement x for the minimal
social cost regarding to the players’ equilibrium in the charging
game, we can formulate the CSPP as the following bi-level
program P. Eq.(8) is the objective; Eq.(9) is for the budget
constraint; Eq.(10) computes the equilibrium strategies of the
EV drivers; and the other equations are constraints for the
strategies, including the positivity and the 1-sum property.
Note that now Ci (P) is also a function of x, but we omitted

3We are able to extend our work to handle other kinds of social cost
function, like the financial cost.
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Fig. 3. Approach flow.

that in the expression for simplicity.

P1: minx, P C(P), (8)

s.t.
∑

i∈N xi ≤ B, xi ∈ N, (9)

pi ∈ arg minp′i Ci (P−i ,p′i ), ∀i ∈ N , (10)
∑

j∈Ai
pi j = 1, ∀i ∈ N (11)

pi j = 0,∀i ∈ N , ∀ j /∈ Ai , (12)

pi j ≥ 0, ∀i, j ∈ N . (13)

We compute the optimal charging station placement with
the Nash equilibrium that can achieve the best social cost.
When there are multiple Nash equilibria for a placement,
the governor can take steps to lead the EV users to form
the best equilibrium with the lowest social cost. For exam-
ple, the governor can provide bounty for some behaviors.
Similar idea is studied widely in security games named tie-
breaking [24].

IV. SOLVE THE CSPP

After we formulate the charging station placement problem
as a bi-level optimization problem P1, we focus on the
algorithm to solve it. The flow of our approach is presented
with Fig. 3. From problem P1 we can see that the sub-
level optimization has multiple objectives, each of which is
the objective for a type of EV users in the charging game.
This feature makes the problem complicated and unable to be
handled with existing solvers. Therefore, we first work on the
sub-level optimization problem (Eqs. (10) – (13)) and propose
an efficient approach to transfer the sub-level optimization
problem into a number of constraints, which can restrict the
Nash equilibrium space of the charging game (i.e., the solution
of the sub-level optimization problem). Then we can result in
an equivalent single-level optimization, which is still difficult
due to the large number of variables (including integer vari-
ables and continuous variables) and large searching space of
the integer variables. We propose a searching algorithm for the
single-level optimization problem to speed up the computation.
Next, we start with analyzing the Nash equilibrium criterion
in formulation, which is useful for problem reformulation.

A. Deviation of Strategies

According to the definition of equilibrium that we men-
tioned in last section, we need to consider the player’s
unilateral strategy change and the influence in its charging
cost to prove the stableness of the equilibrium state. Here we
use an n-dimensional vector �p = (�1, ...,�n) to denote

player i ’s unilateral strategy change with reference to the
strategy profile P. The strategy change is named strategy
deviation and should meet the following criterions.

∑
j∈N � j = 0 (14)

−pi j ≤ � j ≤ 1− pi j , ∀ j ∈ Ai (15)

When type i players change their strategy from pi to pi
′ =

pi+�p, recall that yi j denotes the charging flow from zone i
to zone j and y j denotes the number of EVs that charge in
zone j , we have y ′i j = yi j + γi� j , y ′j = y j + γi� j , and the
change in type i EVs’ cost can be formulated as:

�Ci (P,�p) = Ci (P−i ,pi
′)− Ci (P)

=
∑

j∈Ai
γi [pi j (λdi j ki j

γi� j

τ
+ γi� j

μτ x j
)

+� j (λdi jαi j + λdi j ki j
γi� j

τ
+ y j

μτ x j
+ γi� j

μτ x j
)]

=
∑

j∈Ai
γi

[( pi jγi

τ
(λdi j ki j + 1

μx j
)+ λdi jαi j + y j

μτ x j

)
� j

+ (λdi j ki j
γi

τ
+ γi

μτ x j
)�2

j

]
. (16)

For the ease of description, we rewrite it as

�Ci (P,�p) =
∑

j∈Ai
γi (ξi j� j + ηi j�

2
j ). (17)

We can reformulate the CSPP P1 with the Nash equilibrium
definition – no player has the incentive to deviate.

P2: minx,P C(P), (18)

s.t. �Ci (P,�p) ≥ 0, ∀i ∈ N , ∀�p,

(9), (11)–(13). (19)

We use Eq. (19) to restrict the Nash equilibrium space in
stead of using Eq. (10). In this case, we have reformulated the
bi-level optimization problem into a single-level one. However,
there are infinite number of constraints in the problem, because
�p of Eq. (19) for each i is a vector with continuous
elements. Thus we need to furthermore find a way to solve the
problem P2. We propose a simple deviation approach, which
can replace Eq. (19) with a finite number of constraints and
make the optimization problem solvable.

B. Simple Deviation Approach

Before introducing the approach, we first define a special
type of deviation called simple deviation.

Definition 1 (Simple Deviation): A simple deviation of
type i player is a strategy change, where only the probabilities
of a pair of pure strategies are changed (one increases and the
other decreases by the same amount), while the probabilities
of all the other pure strategies remain unchanged. A simple
deviation is denoted as a tuple 〈l, h, δ〉 with δ > 0, which
corresponds to a deviation vector �p, such that �l = −δ,
�h = δ, and � j = 0,∀ j /∈ {l, h}.

We can then prove an important property of CSPP as
Lemma 1 based on simple deviation, which is used for sim-
plifying the equilibrium criterion in the derived program P2.
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Lemma 1: Given a strategy profile P with pil > 0, type i
player cannot reduce her charging cost through a unilateral
simple deviation from pure strategy l to h (i.e., reduce pil and
increase pih), if and only if ξih ≥ ξil .

Proof: The basic idea to prove this lemma is to derive
the charging cost change due to an unilateral simple deviation
and analyze it. From Definition 1 and Eq. (17), we can see
the charging cost change due to an unilateral simple deviation
〈l, h, δ〉 for type i players can be denoted as

�Ci (P,�p) = γi (ηil + ηih )δ
2 + γi (ξih − ξil )δ. (20)

Note that this is a quadratic function of δ. While player i with
a nonzero simple deviation �p = 〈l, h, δ〉 cannot reduce her
charging cost, we have pil > 0 and δ ∈ [0, pil ]; what we need
to prove is �Ci (P,�p) ≥ 0. From Eq. (16) we can easily get
ηil + ηih > 0. As a result, ξih has to be no smaller than
ξil to ensure �Ci (P,�p) to be non-negative for all possible
value of δ. We can show this with discussion in two cases.
First, if ξih < ξil , there is always some δ < ξil−ξih

ηil+ηih
such that

�Ci (P,�p) < 0. Second, if ξih ≥ ξil , we can easily see that
�Ci ≥ 0 for all δ ≥ 0. Therefore, type i player with pil > 0
cannot reduce her charging cost through a simple deviation
from pure strategy l to h if and only if ξih ≥ ξil . �

Lemma 2: If a player cannot reduce her cost by any uni-
lateral simple deviation, then she can neither reduce her cost
by any unilateral strategy deviation.

Proof: Before proving the lemma, we show that an
arbitrary unilateral strategy deviation �pi for any player i can
be decomposed into a number of unilateral simple deviations,
thus charging cost change �pi can also be decomposed. For
simplicity, we denote the unilateral strategy deviation of player
i as �p = (�1, ...,�n). For the elements in the vector �p,
there must be negative and positive ones, for which we use two
sets L = {i | i ∈ N ,�i < 0} and H = {i | i ∈ N�i > 0} to
represent respectively. We can see that implement of deviation
�p can be achieved by a number of simple deviations, where
each is a deviation from an l ∈ L to an h ∈ H with the
proportion δhl = |�l | · �h∑

i∈H �i
.

Consequently, we decompose the change in charging cost
due to an arbitrary strategy deviation as in the following.

�Ci (P,�p)
γi

=
∑

j∈Ai
(ξi j� j + ηi j�

2
j )

=
∑

l∈L
(
ξil (−

∑
h∈H δhl)+ ηil (−

∑
h∈H δhl)

2)

+
∑

h∈H
(
ξih (

∑
l∈L δhl)+ ηih (

∑
l∈L δhl)

2)

≥
∑

l∈L
(
ξil (−

∑
h∈H δhl)+ ηil (

∑
h∈H δ

2
hl)

)

+
∑

h∈H
(
ξih (

∑
l∈L δhl)+ ηih (

∑
l∈L δ

2
hl)

)

=
∑

l∈L
∑

h∈H(ηil + ηih )δ
2
hl + (ξih − ξil )δhl

Note that for the ease of presentation, the cost change is
divided by the number of EV users in zone i , i.e., γi . As we
can see from the above formulations, the charging cost change
due to an arbitrary strategy deviation can be compared with
the sum of the charging cost change due to the set of simple
deviations that equal to the original deviation and it is always
no smaller than the latter. With the prerequisite of the lemma,

we know that player i cannot reduce his charging cost by
any simple deviation, including the set of simple deviations
we had as a decomposition of the arbitrary strategy deviation.
Referring to Lemma 1, we can know ξih ≥ ξil is true for
all l ∈ L and h ∈ H, i.e., the part to be summed in the
right hand side of the above inequality is non-negative. Thus
we have proved that �Ci (P,�p) ≥ 0. Since �p and i are
arbitrary, thus no player can reduce her charging cost by any
unilateral strategy deviation while they cannot achieve that
with any unilateral simple deviation. �

Proposition 3: A strategy profile P forms a Nash equilib-
rium if and only if ξih ≥ ξil ,∀i ∈ N ,∀l, h ∈ Ai , pil > 0.

Proof: The proposition is quite straightforward if we
follow Lemma 1, Lemma 2 and the converse direction of
Lemma 2, which must hold because a simple deviation is
a special case of arbitrary strategy deviation. Under the
equilibrium definition, no player can decrease the charging
cost with arbitrary unilateral strategy deviation ⇔ no player
can decrease his charging cost using any unilateral simple
deviation ⇔ ξil ≤ ξih ,∀i ∈ N ,∀l, h ∈ Ai , pi j>0. �

Based on Proposition 3, we can avoid an infinite number
of non-linear constraints as Eq. (19). With the results from
Proposition 3, we know that under the equilibrium strategy
profile P, there is ξih ≥ ξil ,∀i ∈ N ,∀l, h ∈ Ai , pil > 0,
which can be reformulated as pilξih ≥ pilξil ,∀i ∈ N ,∀l,
h ∈ Ai . Therefore, we propose OCEAN (Optimizing eleC-
tric vEhicle chArging statioN placement) in program P3 to
compute the optimal solution of the CSPP instead of using
program P2.

P3: minx,P C(P), (21)

s.t. pilξih ≥ pilξil , ∀i ∈ N , ∀l, h ∈ Ai ,

(9), (11)–(13). (22)

The above program is a single-level non-linear optimization
problem and can be handled by a standard non-linear opti-
mization solver.

C. Problem Analysis

An important concept in game theory is the price of
anarchy (PoA) [25], which is the ratio between the maxi-
mum social cost among different equilibria and the minimum
social cost regardless of players’ selfish behavior (in other
words, assuming the players follow the instruction of a central
controller who aims to minimize the social cost). PoA is a
concept that measure the worst-case inefficiency of the system
caused by the selfish behavior of players. We use S and E to
respectively denote the strategy space and Nash equilibrium
strategy space of the charging game. They can be formally
defined as

S = {P|P satisfies Eqs. (11)–(13)}, (23)

E = {P|P satisfies Eqs. (11)–(13), (22)}. (24)

Then the definition of PoA is

PoA = max
P∈E

C(P)/Opt , (25)
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where Opt denotes the socially optimal cost assuming that all
EVs’ charging behavior can be controlled, which is

Opt = maxP∈S C(P). (26)

We can prove the theoretical result of PoA as in the
following theorem.

Theorem 1: The price of anarchy of the charging game is
at most 3+√5

2 ≈ 2.618.
Proof: For the ease of description, we first rewrite the

linear cost functions (i.e., travel cost and queuing cost) as
ce( fe) = ae fe + be for each congestion element e ∈ N ⋃R.
According to Eqs. (1) to (3), we have

ae =

⎧
⎪⎨

⎪⎩

λdi j ki j
1

τ
, e = 〈i, j〉 ∈ R;

1

μτ xi
, e = i ∈ N ;

be =
{
λdi j ki jα

0
i j , e = 〈i, j〉 ∈ R;

0, e = i ∈ N .

Obviously, ae > 0 and be ≥ 0. Let P be a Nash equilibrium
strategy, and P∗ be the strategy profile for social optimum.
Suppose in a Nash equilibrium, player i deviates by playing
the social optimal strategy p∗i , it follows that

∑
j∈Ai

pi j

∑
e∈Si j

ce( fe)≤
∑

j∈Ai
p∗i j

∑
e∈Si j

ce( f ∗e )

≤
∑

j∈Ai
p∗i j

∑
e∈Si j

ce( fe + f ∗e ).

The first inequality holds since P forms a Nash equilibrium,
thus player i can never decrease his charging cost by unilat-
erally deviating his own strategy.

Since the above inequality holds for all player i , we have

C(P) =
∑

i∈N γi

∑
j∈Ai

pi j

∑
e∈Si j

ce( fe)

≤
∑

i∈N γi

∑
j∈Ai

p∗i j

∑
e∈Si j

ce( fe + f ∗e )

=
∑

i∈N γi

∑
j∈Ai

p∗i j

∑
e∈Si j

[
ce( f ∗e )+ ae fe

]

= C(P∗)+
∑

i∈N γi

∑
j∈Ai

p∗i j

∑
e∈Si j

ae fe

= C(P∗)+
∑

e∈N ⋃R ae fe f ∗e .

We apply the Cauchy-Schwarz inequality to the last term and
get following inequality:

∑
e

ae fe f ∗e

≤
√∑

e
ae f 2

e ·
√∑

e
ae( f ∗e )2

≤
√∑

e
fe · (ae fe + be) ·

√∑
e

f ∗e · (ae f ∗e + be)

= √
C(P) ·√C(P∗).

It follows that

C(P) ≤ C(P∗)+√
C(P) ·√C(P∗)

⇒ C(P)
C(P∗)

≤ 1+
√

C(P)
C(P∗)

⇒ 0 ≤
√

C(P)
C(P∗)

≤ 1+√5

2
(by solving x2 − x − 1 ≤ 0)

⇒ C(P)
C(P∗)

≤ 3+√5

2
≈ 2.618.

Thus we can conclude that the PoA is at most around 2.618.
Note that the value 2.618 holds for any charging station
placement x. Therefore we can rewrite it more accurately as
PoA = maxx maxP∈E

C(P)
O pt . �

Furthermore, with the formulation P3 that we derived in
previous section, we can compute the PoA for a specific
setting in practice as follows, which could be much lower than
2.618. Note that when we compute the optimal solution of the
charging station placement problem with P3, we are actually
computing the charging station placement x∗ with the best
minimum equilibrium social cost, i.e.,

x∗ ∈ argx minx,P∈E C(P).

Then, we can compute the POA for this specific setting
based on charging station placement x∗. We compute the max-
imum equilibrium social cost maxP∈E C(P) and social opti-
mum Opt respectively with following programs P4 and P5.

P4: maxP C(P), (27)

s.t. x = x∗,
(11)–(13), (22). (28)

P5: Opt = minP C(P), (29)

s.t. x = x∗,
(11)–(13). (30)

Note that to compute the optimal social cost without
considering the EVs’ selfish driving behavior, we eliminate
conditions represented by Eq. (22) in P5. As we will show
later in the experiment section, the computed POA for specific
settings is much smaller than 2.618.

D. Speeding Up OCEAN

As we can see from the formulation of OCEAN in P3, it is
a mixed integer non-linear problem and the number of non-
linear constraints expressed in Eq. (22) grows very fast with
the number of players and strategies increasing. As a result,
OCEAN is unable to handle large-scale real-world problems.

To handle large-scale problems, we compute the optimal
solution in two steps by using a heuristic algorithm OCEAN-C
(namely OCEAN with Continuous variables), which is shown
in Algorithm 1.

Firstly, we relax x to be continuous variables and solve the
optimal solution x∗ of P3. Since the number of chargers in
x∗ of different zones are not integers, we round x∗ to x̂. The
rounding process is first to take the floor value of each x∗i ,
sort the zones according to the xi − �xi� value descendingly,
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Algorithm 1 OCEAN-C

1 Relax x to be continuous;
2 Solve optimal solution x∗ of P3;
3 x̂← rounded x∗;
4 Compute the optimal solution Obj of P3 with x set as x̂

(refer to Algorithm 2);
5 return Obj , x̂;

Algorithm 2 Sub-OCEAN-C

1 Initiate indicator vector φ as {0};
2 Set f 0

i j = λdi j (α
0
i j + ki j ) and gi = 1

τ xi
for all roads and

charging stations with xi > 0;
3 for i ∈ N do
4 Set cmin

i = min j∈Ai c0
i j = min j∈Ai ( f 0

i j + g0
j );

5 for j ∈ Ai with x j > 0 do
6 if c0

i j ≤ ϕcmin
i then Let φi j = 1;

7 Set f lag = 1;
8 repeat
9 Solve problem P6 and get objective value Obj ;

10 Set f lag = 0;
11 for i ∈ N do

/* ———- Rule A ———- */
12 for k ∈ Ai with φik = 1 do
13 if pik < 1.0e− 6 then
14 Let φik ← 0;
15 Set f lag = 1;

/* ———- Rule B ———- */
16 Get a ξi j with φi j = 1;
17 for k ∈ Ai with φik = 0 do
18 if ξik < ξi j then
19 Let φik ← 1;
20 Set f lag = 1;

21 until f lag = 0;
22 return Obj ;

then set x̂i for the top R = B−∑
i∈N �x∗i � zones as �xi�+ 1

and otherwise �xi�. To compute the optimal solution of CSPP,
we set x as x̂, the result of which is the output of OCEAN-C.
With x determined, the single level CSPP’s runtime sharply
decreases.

Furthermore, we specify the sub-algorithm of OCEAN-C in
Algorithm 2, which is designed to compute the equilibrium of
the charging game with a given charging station placement.
As we can see from P3, the problem is non-linear, and the
main difficulty comes from distinguishing the employed pure
strategies (with using probability > 0) from the abandoned
ones (with using probability = 0), which results in constraint
denoted by Eq. (22). Then we naturally consider to specify
the employed strategies (also named “support”) before solving
the equilibrium. Following the idea, we design Algorithm 2 to
compute the equilibrium, where we first initiate the support
manually and gradually expand the support set by carefully

comparing the pure strategies until an equilibrium is reached.
For a given support set, we use the following program to
compute the equilibrium.

P6: minP C(P), (31)

s.t. pi j = 0, ∀i ∈ N , φi j = 0, (32)

ξih ≥ ξil , ∀i ∈ N , ∀l, h ∈ Ai , φih = φil = 1,

(9), (11)–(13). (33)

Note that the vector φ is an artificial indicator corresponding
to the variable P. When φi j = 0, we force pi j as 0; if φi j = 1,
then pi j > 0 and the corresponding pure strategy is in
the support. We only compare the ξ value for strategies in
the support set to avoid the problem being infeasible when
there is a pure strategy who is not in the support set but its
corresponding ξ value is smaller. The problem P6 is a convex
optimization problem with linear constraints that can be solved
efficiently.

In Lines 1–6 of the algorithm, we initiate the indicator for
each pure strategy according to the basic charging cost calcu-
lated by assuming that only one player uses the corresponding
strategy (as in Line 2) and put some of the pure strategies into
the support by comparing the basic charging cost. Note that
the coefficient ψ in Line 6 is to decide the size of the initial
support set and derived from practice. Rule A and Rule B
are two criterions for updating the support space. Rule A is
used to delete the useless strategies and Rule B is for adding
better pure strategies into the support. When no change is
made after checking the two rules, the algorithm terminates
with an equilibrium of the charging game.

V. EXPERIMENTAL EVALUATION

In this section, we run experiments on the real data set
from Singapore to evaluate our approach. To compare multiple
methods, all experiments were run on the same data set using
a 3.4G H z Intel processor with 16G B of RAM, employing
KNITRO (version 9.0.0) for nonlinear programs. The results
were averaged over 20 trials.

A. Data Set and Baseline Methods

The population of all motor vehicles in Singapore has
reached 969 910 in year 2012 according to the statistics in the
official websites of Singapore Land Transport Authority (LTA)
and Singapore Department of Statistics (DOS). Based on the
conventional partition method as shown in Fig. 1, combined
with the accessible graphical and residential distribution data
on the websites, we divide Singapore into 23 zones to test our
approach. A basic assumption is that the number of vehicles
is proportional to the number of residents in each zone. Then
we assume that 10% among all the vehicles in Singapore
are EVs, 5% among which would need charging in charging
stations during peak hours. Using the distance measure tool in
Google Maps, the distances between adjacent zones’ centers
are estimated; a normal congestion α0

i j during the peak hours
is taken with the ratio of travel time during peak hours and the
distance between zones i and j . The road capacity of the roads
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Fig. 4. Compare OCEAN-C with OCEAN and baselines. Figs.a & b are the runtime and optimal objective value of algorithm OCEAN and OCEAN-C when
problem size increases; Fig.c is optimal objective values of OCEAN-C and baseline methods when the budget increases, while Fig.d is the corresponding
results with human behavior uncertainty; Figs.e and f are results with different number of EV drivers in the charging game.

between any two zones are set as the same value, which means
ki j = 0.01 for all pairs i and j . We assume averagely 6 EVs
can be served in one hour by each charger, i.e., serving rate of
chargers is set as μ = 6. The proportion of EVs that charge
during peak hours is set as 1

τ = 1
10 . The linear coefficient λ

in the travel cost function is fixed at 0.2. Unless otherwise
specified, we use the above parameters in all our experiments.
We combine some small zones of the 23-zones to generate
data of different n (from 6 to 10), so that we can run OCEAN,
which has scalability issues, to get the results (both runtime
and solution quality) and compare them with OCEAN-C.

To demonstrate the performance of our approach, we com-
pare it with three baseline methods:
• The first baseline method is named CSCD. CSCD assigns

the number of chargers to each zone proportional to the
number of residential EV users in each zone. Specifically,
xi ∝ γi .

• The second baseline method is named CSTC. CSTC
assigns the number of chargers in each zone according
to the traffic condition as well as the physical distance.
Specifically, for each zone i and one of its adjacent zone
j , we calculate the reciprocal of α0

j id j i (intuitively, this
value means the difficulty for EV users in zone j to
charge in zone i ), then sum that value of all adjacent
zones together. We decide the number of chargers in zone
i as xi ∝∑

j∈Ai
1/(α0

j id j i).

• The third baseline method is named CSAV. CSAV assigns
the chargers in different zones averagely.

We get the results (the optimal social cost) for each baseline
method by first compute the number of chargers in each zone
according to the principals described above, then compute the
EV users’ charging activity equilibrium and the resulted social
cost. The program is the same as program P3 but x is fixed
rather than a variable.

B. Performance Evaluation
1) OCEAN-C vs. OCEAN: We combine some small zones

of the 23-zone division (shown in Fig. 1) to get smaller zone

divisions (n changes from 6 to 10) because OCEAN cannot
handle large-scale problems. The budget of total number of
chargers is set as 300 in the experiments. In Figs. 4a, the run-
time performance of OCEAN and OCEAN-C are compared
with bars. We can see that OCEAN-C always saves runtime
comparing to OCEAN. Moreover, when the problem scale
grows, the runtime of OCEAN increases faster then that of
OCEAN-C, which indicates that OCEAN-C is much more
time-efficient than OCEAN. When we look at the solution
quality (i.e., the optimal social cost) depicted in 4b, we can find
that OCEAN-C can save runtime without seriously sacrificing
the solution quality because the minor difference in social
cost of both approach is invisible when expressed with the
bars. Therefore, we use OCEAN-C as a substitute approach
for OCEAN in following experiments.

2) OCEAN-C vs. Baseline Methods: We compare our
approach OCEAN-C with three baseline methods when the
number of zones n is set as 23. As we can see from Fig. 4c,
when the budget is increasing (from 200 to 600), the optimal
objective value of all approaches keeps going down, because
more resources usually means better service and customer
convenience. Nevertheless, our approach outperforms all of
them and achieves minimal social cost. In Fig. 4e, the results
of changing the number of EV users are depicted. We can see
that when the number of EV users is more, the minimal social
cost is higher, because they have more influence on the traffic
congestion and also the queuing condition in charging stations.
In this case, our approach that takes into account the EV users’
strategic behaviors can significantly decrease the social cost.
In conclusion, OCEAN-C outperforms the baseline methods.

3) Robustness Evaluation: We then evaluate the robustness
of our approach and compare its performance with the base-
line methods regarding to the EV users’ limited rationality.
We assume that EV users are full informative and rational
in the problem model. While people might be able to learn
the equilibrium in repeated charging activities, there can be
some special cases that change their activity in practice. For
example, they might need to deal with a special thing or meet
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Fig. 5. (a) Compare maximum equilibrium social cost and social optimal;
(b) Trend of PoA under different budgets.

someone, which may result in strategy deviation. We assume
that there are part of EV users deviate their charging activities
from equilibrium, This proportion is set as 10% for each
zone, i.e., we compute the social cost again with the 90%
of EV users following the equilibrium and 10% of them
choose a charging strategy from their strategy space randomly.
In Figs. 4d and 4f, we present the robustness test results for all
approaches in consideration of different budget and different
number of EV users respectively. The number of zones is set
n = 23. Under comparison with Figs. 4c and 4e, we can see
that the EV users’ deviation from equilibrium can cause more
social cost. However, our approach OCEAN-C can keep the
superiority comparing to the baseline methods.

4) EVs Charge in Remote Zones: When we formulate the
charging game previously, we made an assumption that the EV
users only charge in adjacent zones (including their residential
zone). To prove that this assumption is realistic and reasonable,
we use experiments to show that almost all EV users only
charge in adjacent zones even when they are allowed to charge
further, because the latter usually result in higher charging
cost. We relax the assumption for EV users in zone i by
allowing them to charge in a neighbor zone of its adjacent
zones (but not in Ai ), which is name two-stop remote zones.
We compare the results of the original model and the new
one under the same data set. It turns out that the social cost
increases slightly, but the change is less than 0.001, which
is negligible comparing to the original optimal social cost at
about 4000). Moreover, the EV users seldom use the two-
stop strategies. As a result we can see that the assumption of
charging only in adjacent zones is realistic and reasonable.

5) Experimental Results of PoA: We conduct experiments
based on optimal charging station placement derived from
OCEAN-C and the experiment set with n = 23. The coef-
ficient ϕ used for initiating the support set in Algorithm 2
Line 6 is set as 1.5. Actually the coefficient can vary in a big
range and still work. When it is getting smaller, the number
of iterations of solving problem P6 can increase; and when it
is too large, it is possible that the problem becomes infeasible.
We select 1.5 as ϕ value in this set of experiment. The
maximum equilibrium social cost and the minimum social cost
without consideration of EVs’ selfish charging behavior are
respectively computed with programs P4 and P5.

As we can see from following Fig. 5a, there is small
difference between the maximum equilibrium social cost and
optimal social cost respectively depicted by the “Max_ESC”
and “Min_SC” bars. We can refer to Fig. 5b for the trend of
PoA w.r.t. the budget. From the figure we can see that when the

amount of social resource (i.e., the budget for charging station
construction here) increases, the inefficiency of the charging
system caused by selfish behavior is becoming smaller.

VI. RELATED WORK

In the past years, the raising concern of the shortage of non-
renewable energy has made new energy a hot research topic.
In the transportation domain, the EV is regarded as an ideal
substitute for traditional vehicles.

Many researchers have made efforts in related techniques
to enable/speed up the EV diffusion, for example analyz-
ing the key factors that may infect the construction of EV
infrastructure [26]. Meanwhile, many researchers are working
on integrating EVs into the traditional transportation network,
for example with a system for EV integration with energy
grid [27]. Rigas et al. gave a survey of such researches [28].

While charging is a premium issue for EV diffusion,
placement of charging stations and charging mechanism are
two important topics worth studying. There are some works
studying the charging mechanism/pattern based on settled
charging network. Rei et al. presented a charging control
mechanism for EVs to integrate with the power grid [29].
Bashash and Fathy designed a cost-optimal charging pattern
for EVs that want to minimize the cost when charge in a time-
varying pricing network [30]. Alesiani et al. focused on the
routing problem of EVs when they want to decide the charging
destination with consideration of the charging cost, remaining
energy etc [31]. In addition, some works focus on new ideas.
For example, providing mobile charging rather than charging
at changeless places for EVs [32] or designing sustainable
transportation rather than merging into the current one [33].

There is also some research on the placement of charging
stations. Tan and Lin proposed to site the charging stations
mainly concerning the demand flow and its uncertainty [34].
Unfortunately, their work fails to consider the interactive
and implicitly competing EV drivers. Timpner and Wolf
designed a scheduling strategy in the case EVs are charged in
carparks [35]. However, this is not applicable to the general
case for the potential large number of users in the city, because
equipping each carpark with charging infrastructure is not
realistic. Hausler et al.’s work also combines charging and
parking [36]. Baouche et al. modeled the charging stations
with a modified Fixed Charge Location Model mixed with a
p-dispersion constraint, which is used to minimize the charging
cost and construction cost [37]. Although accurate estimation
of travel and energy demand was proposed, the work ignored
the influence from the self-directed EV drivers’ behavior.

Our work aims to propose a new angle of view in placing
charging stations. Firstly, our model can merge the model
with real-world data easily, such that we can provide practical
solutions for concrete problem. Secondly, we fill the gap of
previous works and model the influence of humans drivers in
the charging system by using the game-theoretical framework
to capture their selfish and strategic charging behavior.

VII. CONCLUSION

The key contributions of this paper include: (1) a realistic
model for the CSPP in cities like Singapore considering the
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interactions among charging station placement, EV drivers’
charging activities, traffic congestion and queuing time: (2) an
equivalent single level CSPP of the bi-level CSPP optimization
problem obtained through exploiting the structure of the charg-
ing game; (3) an effective heuristic approach that can speed
up the mixed integer CSPP with a large amount of non-linear
constraints; (4) theoretical analysis on PoA and corresponding
experiments for the charging game; (5) experiments results
based on real data from Singapore, which show that our
approach solves an effective allocation of charging stations
and outperforms baselines.
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